Уравнение возможных перемещений. Применение принципа возможных перемещений

1. Обобщённые координаты и число степеней свободы.

При движении механической системы, все её точки не могут перемещаться произвольно, так как они ограничены связями. Это значит, что не все координаты точек независимы. Положение точек определяется заданием только независимых координат.

обобщёнными координатами. Для голономных систем (т.е. таких, связи которых выражаются уравнениями, зависящими только от координат) число независимых обобщённых координат механической системыравно числу степеней свободы этой системы.

Примеры:

Положение всех точек однозначно определяется углом поворота

кривошипа.

Одна степень свободы.

2. Положение свободной точки в пространстве определяется тремя координатами, независимыми друг от друга. Поэтому три степени свободы.

3. Твёрдое вращающееся тело, положение определяется углом поворота j. Одна степень свободы.

4. Свободное твёрдое тело, движение которого определяется шестью уравнениями - шесть степеней свободы.

2. Возможные перемещения механической системы.

Идеальные связи.

Возможными перемещениями называются воображаемые бесконечно малые перемещения, допускаемые в данный момент наложенными на систему связями. Возможные перемещения точек механической системы рассматриваются как величины первого порядка малости, поэтому криволинейные перемещения точек заменяют прямолинейными отрезками, отложенными по касательной к траекториям движения точек и обозначаются dS .

dS A = dj . OA

Все силы, действующие на материальную точку, делятся на задаваемые и реакции связей.

Если сумма работ реакций связей на любом возможном перемещении системы равна нулю, то такие связи называются идеальными.

3. Принцип возможных перемещений.

Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на неё активных сил при любом возможном перемещении системы была равна нулю.

Значение принципа возможных перемещений:

1. Учитываются только активные силы.

2. Даёт в общей форме условие равновесия для любой механической системы, тогда, как в статике необходимо рассматривать равновесие каждого тела системы в отдельности.

Задача.

Для заданного положения кривошипно-ползунного механизма при равновесии, найти зависимость между моментом и силой, если ОА = ℓ .

Общее уравнение динамики.

Принцип возможных перемещений даёт общий метод решения задач статики. С другой стороны, принцип Даламбера позволяет использовать методы статики для решения задач динамики. Следовательно, применяя эти два принципа одновременно, можно получить общий метод решения задач динамики.

Рассмотрим механическую систему, на которую наложены идеальные связи. Если ко всем точкам системы, кроме действующих на них активных сил и реакций связей , прибавить соответствующие силы инерции , то согласно принципу Даламбера полученная система сил будет находиться в равновесии. Применяя принцип возможных перемещений, получим:

Так как связи идеальные, то:

Это равенство представляет общее уравнение динамики.

Из него вытекает принцип Даламбера-Лагранжа – при движении системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю.

Задача.

В подъёмнике к шестерне 2 веса 2G c радиусом R 2 =R приложен вращающий момент М=4GR .

Определить ускорение поднимаемого груза А весом G , пренебрегая весом верёвки и трением в осях. Барабан, на который наматывается верёвка, и жёстко скреплённая с ним шестерня 1 , имеют общий вес 4G и радиус инерции r = R . Радиус барабана R A = R и шестерни 1

R 1 =0,5R .

Изобразим все действующие силы, направление ускорений и возможные перемещения.

________________

Подставим в общее уравнение динамики

Выразим перемещение через угол поворота δφ 1

Подставим значения

δφ 1 ≠0

Выразим все ускорения через искомое а А и приравняем выражение в скобках к нулю

Подставим значения

Принцип возможных перемещений.

а = 0,15 м

b = 2а = 0,3 м

m = 1,2 Нм _________________

х В; у В; N A ; M p

Решение: Найдём реакцию подвижной опоры А для чего мысленно отбросим эту связь, заменив её действие реакцией N A

Возможным перемещением стержня АС является его поворот вокруг шарнира С на угол dj . Стержень ВС остаётся неподвижным.

Составим уравнение работ, учитывая, что работа сил при повороте тела равна произведению момента силы относительно центра вращения на угол поворота тела.

Для определения реакций жёсткого закрепления в опоре В сначала найдём момент реакции М р . Для этого отбросим связь, препятствующую повороту стержня ВС , заменив жёсткое закрепление шарнирно-неподвижной опорой и приложив момент М р .

Сообщим стержню возможный поворот на угол dj 1 .

Составим уравнение работ для стержня ВС :

Определим перемещения:

Для определения вертикальной составляющей реакции жёского закрепления отбросим связь, препятствующую вертикальному перемещению точки В , заменив жёсткое закрепление скользящей (невозможен поворот) и приложив реакцию :

Сообщим левой части (стержню ВС с ползуном В ) возможную скорость V B поступательного движения вниз. Стержень АС повернётся вокруг точки А.

Составим уравнение работ:

Для определения горизонтальной составляющей реакции жёсткого закрепления отбросим связь, препятствующую горизонтальному перемещению точки В заменив жёсткую заделку скользящей и приложив реакцию :

Сообщим левой части (ползуну В вместе со стержнем ВС ) возможную скорость V B поступательного движения влево. Так как опора А на катках, то и правая часть будет перемещаться поступательно с той же скоростью. Следовательно .

Составим уравнение работ для всей конструкции.

Для проверки правильности решения составим уравнения равновесия всей системы:

Условие выполнено.

Ответ: y B = -14,2 H; X B = -28,4 H; N A = 14,2 H; V P =3,33 Hм.

Обобщённые скорости. Обобщённые силы.

Независимые величины, однозначно определяющие положение всех точек механической системы, называются обобщёнными координатами. q

Если система имеет S степеней свободы, то её положение будет определяться S обобщёнными координатами:

q 1 ; q 2 ; …; q s .

Поскольку обобщённые координаты между собой независимы, то элементарные приращения этих координат будут также независимы:

dq 1 ; dq 2 ; …; dq S .

При этом каждая из величин dq 1 ; dq 2 ; …; dq S определяет соответствующее, независимое от других возможное перемещение системы.

При движении системы её обобщённые координаты будут с течением времени непрерывно изменяться, закон этого движения определяется уравнениями:

, …. ,

Это уравнения движения системы в обощённых координатах.

Производные от обобщённых координат по времени называются обобщёнными скоростями системы:

Размерность зависит от размерности q .

Рассмотрим механическую систему, состоящую из n материальных точек, на которые действуют силы F 1 , F 2 , F n . Пусть система имеет S степеней свободы и её положение определяется обобщёнными координатами q 1 ; q 2 ; q 3 . Сообщим системе возможное перемещение, при котором координата q 1 получает приращение dq 1 , а остальные координаты не изменяются. Тогда радиус-вектор к-той точки получает элементарное приращение (dr k) 1 . Это приращение, которое получает радиус-вектор при изменении только координаты q 1 на величину dq 1 . Остальные координаты остаются неизменными. Поэтому (dr k) 1 вычисляется как частный дифференциал:

Вычислим элементарную работу всех приложенных сил:

Вынесем за скобки dq 1 , получим:

где - обобщённая сила.

Итак, обобщённая сила это коэффициент при приращениях обобщённой координаты.

Вычисление обобщённых сил сводится к вычислению возможной элементарной работы.

Если меняются все q , то:

Согласно принципа возможных перемещений, для равновесия системы необходимо и достаточно, чтобы SdА а к = 0 . В обобщённых координатах Q 1 . dq 1 + Q 2 . dq 2 + … + Q s . dq s = 0 следовательно, для равновесия системы необходимо и достаточно, чтобы обобщённые силы, соответствующие выбранным для системы возможным перемещениям, а значит и обобщённым координатам, были равны нулю.

Q 1 = 0; Q 2 = 0; … Q s = 0.

Уравнения Лагранжа.

Используя общее уравнение динамики для механической системы, можно найти уравнения движения механической системы.

4) определить кинетическую энергию системы, выразить эту энергию через обобщённые скорости и обобщённые координаты;

5) найти соответствующие частные производные от Т по и и подставить все значения в уравнение.

Теория удара.

Движение тела под действием обычных сил характеризуется непрерывным изменением модулей и направлений скоростей этого тела. Однако встречаются случаи, когда скорости точек тела, а следовательно и количество движения твёрдого тела за очень маленький промежуток времени получают конечные изменения.

Явление, при котором за ничтожно малый промежуток времени скорости точек тела изменяются на конечную величину, называется ударом.

Силы, при действии которых происходит удар, называются ударными.

Малый промежуток времени t , в течение которого происходит удар, называется временем удара.

Так как ударные силы очень велики и за время удара изменяются в значительных пределах, то в теории удара в качестве меры взаимодействия тел рассматривают не сами ударные силы, а их импульсы.

Импульсы неударных сил за время t будут величинами очень малыми и ими можно пренебречь.

Теорема об изменении количества движения точки при ударе:

где v – скорость точки в начале удара,

u – скорость точки в конце удара.

Основное уравнение теории удара.

Перемещение точек за очень малый промежуток времени, то есть за время удара, будут также малы, а следовательно, будем считать тело неподвижным.

Итак, можно сделать следующие выводы о действии ударных сил:

1) действием неударных сил за время удара можно пренебречь;

2) перемещениями точек тела за время удара можно пренебречь и считать тело во время удара неподвижным;

Перейдем к рассмотрению еще одного принципа механики, который устанавливает общее условие равновесия механической системы. Под равновесием (см. § 1) мы понимаем то состояние системы, при котором все ее точки под действием приложенных сил находятся в покое по отношению к инерциальной системе отсчета (рассматриваем так называемое «абсолютное» равновесие). Одновременно будем считать все наложенные на систему связи стационарными и специально это в дальнейшем каждый раз оговаривать не будем.

Введем понятие о возможной работе, как об элементарной работе, которую действующая на материальную точку сила могла бы совершить на перемещении, совпадающем с возможным перемещением этой точки. Будем возможную работу активной силы обозначать символом , а возможную работу реакции N связи - символом

Дадим теперь общее определение понятия об идеальных связях, которым мы уже пользовались (см. § 123): идеальными называются связи, для которых сумма элементарных работ их реакций на любом возможном перемещении системы равна нулю, т. е.

Приведенное в § 123 и выраженное равенством (52) условие идеальности связей, когда они одновременно являются стационарными, соответствует определению (98), так как при стационарных связях каждое действительное перемещение совпадает с одним из возможных. Поэтому примерами идеальных связей будут все примеры, приведенные в § 123.

Для определения необходимого условия равновесия докажем, что если механическая система с идеальными связями находится действием приложенных сил в равновесии, то при любом возможном перемещении системы должно выполняться равенство

где - угол между силой и возможным перемещением.

Обозначим равнодействующие всех (и внешних, и внутренних) активных сил и реакций связей, действующих на какую-нибудь точку системы соответственно через . Тогда, поскольку каждая из точек системы находится в равновесии, , а следовательно, и сумма работ этих сил при любом перемещении точки будет тоже равна нулю, т. е. . Составив такие равенства для всех точек системы и сложив их почленно, получим

Но так как связи идеальные, представляют собой возможные перемещения точек системы, то вторая сумма по условию (98) будет равна нулю. Тогда равна нулю и первая сумма, т. е. выполняется равенство (99). Таким образом, доказано, что равенство (99) выражает необходимое условие равновесия системы.

Покажем, что это условие является и достаточным, т. е. что если к точкам механической системы, находящейся в покое, приложить активные силы удовлетворяющие равенству (99), то система останется в покое. Предположим обратное, т. е. что система при этом Придет в движение и некоторые ее точки совершат действительные перемещения . Тогда силы совершат на этих перемещениях работу и по теореме об изменении кинетической энергии будет:

где, очевидно, , так как вначале система была в покое; следовательно, и . Но при стационарных связях действительные перемещения совпадают с какими-то из возможных перемещений и на этих перемещениях тоже должно быть что противоречит условию (99). Таким образом, когда приложенные силы удовлетворяют условию (99), система из состояния покоя выйти не может и это условие является достаточным условием равновесия.

Из доказанного вытекает следующий принцип возможных перемещений: для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю. Математически сформулированное условие равновесия выражается равенством (99), которое называют также уравнением возможных работ. Это равенство можно еще представить в аналитической форме (см. § 87):

Принцип возможных перемещений устанавливает общее условие равновесия механической системы, не требующее рассмотрения равновесия отдельных частей (тел) этой системы и позволяющее при идеальных связях исключить из рассмотрения все наперед неизвестные реакции связей.


Необходимо и достаточно, чтобы сумма работ , всех приложенных к системе активных сил на любом возможном перемещении системы была равна нулю.

Количество уравнений, которые можно составить для механической системы, исходя из принципа возможных перемещений, равно количеству степеней свободы этой самой механической системы.

Литература

  • Тарг С. М. Краткий курс теоретической механики. Учеб. для втузов.- 10-е изд., перераб. и доп. - М.: Высш. шк., 1986.- 416 с, ил.
  • Основной курс теоретической механики (часть первая) Н. Н. Бухгольц, изд-во «Наука», Главная редакция физико-математической литературы, Москва, 1972, 468 стр.

Wikimedia Foundation . 2010 .

Смотреть что такое "Принцип возможных перемещений" в других словарях:

    принцип возможных перемещений

    Один из вариационных принципов механики, устанавливающий общее условие равновесия механич. системы. Согласно В. п. п., для равновесия механич. системы с идеальными связями (см. СВЯЗИ МЕХАНИЧЕСКИЕ) необходимо и достаточно, чтобы сумма работ dAi… … Физическая энциклопедия

    Большой Энциклопедический словарь

    ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ ПРИНЦИП, для равновесия механической системы необходимо и достаточно, чтобы сумма работ всех действующих на систему сил при любом возможном перемещении системы была равна нулю. Возможных перемещений принцип применяется при… … Энциклопедический словарь

    Один из вариационных принципов механики (См. Вариационные принципы механики), устанавливающий общее условие равновесия механической системы. Согласно В. п. п., для равновесия механической системы с идеальными связями (см. Связи… … Большая советская энциклопедия

    Виртуальных скоростей принцип, дифференциальный вариационный принцип классической механики, выражающий наиболее общие условия равновесия механических систем, стесненных идеальными связями. Согласно В. п. п. механич. система находится в равновесии … Математическая энциклопедия

    Для равновесия механической системы необходимо и достаточно, чтобы сумма работ всех действующих на систему сил при любом возможном перемещении системы была равна нулю. Возможных перемещений принцип применяется при изучении условий равновесия… … Энциклопедический словарь

    Для равновесия механич. системы необходимо и достаточно, чтобы сумма работ всех действующих на систему сил при любом возможном перемещении системы была равна нулю. В. п. п. применяется при изучении условий равновесия сложных механич. систем… … Естествознание. Энциклопедический словарь

    принцип виртуальных смещений - virtualiųjų poslinkių principas statusas T sritis fizika atitikmenys: angl. principle of virtual displacement vok. Prinzip der virtuellen Verschiebungen, n rus. принцип виртуальных смещений, m; принцип возможных перемещений, m pranc. principe des … Fizikos terminų žodynas

    Один из вариационных принципов механики, согласно к рому для данного класса сравниваемых друг с другом движений механич. системы действительным является то, для которого физ. величина, наз. действием, имеет наименьшее (точнее, стационарное)… … Физическая энциклопедия

Книги

  • Теоретическая механика. В 4-х томах. Том 3: Динамика. Аналитичекая механика. Тексты лекций. Гриф МО РФ , Богомаз Ирина Владимировна. В учебном пособии изложены две части единого курса по теоретической механике: динамика и аналитическая механика. В первой части подробно рассматривается первая ивторая задачи динамики, также…

Принцип возможных перемещений позволяет решать самые разнообразные задачи на равновесие механических систем - находить неизвестные активные силы, определять реакции связей, находить положения равновесия механической системы под действием приложенной системы сил. Проиллюстрируем это на конкретных примерах.

Пример 1. Найти величину силы Р, удерживающей тяжелые гладкие призмы с массами в состоянии равновесия. Угол скоса призм равен (рис. 73).

Решение. Воспользуемся принципом возможных перемещений. Сообщим системе возможное перемещение и вычислим возможную работу активных сил:

Возможная работа силы тяжести равна нулю, так как сила перпендикулярна вектору элементарного перемещения точки приложения силы. Подставляя сюда значение и приравнивая выражение нулю, получаем:

Так как , то равно нулю выражение в скобках:

Отсюда находим

Пример 2. Однородная балка АВ длиной и весом Р, нагруженная парой сил с заданным моментом М, закреплена как показано на рис. 74 и находится в покое. Определить реакцию стержня BD, если он составляет угол а с горизонтом.

Решение. Задача отличается от предыдущей тем, что здесь требуется найти реакцию идеальной связи. Но в уравнение работ выражающее принцип возможных перемещений, реакции идеальных связей не входят. В таких случаях принцип возможных перемещений следует применять совместно с принципом освобождаемости от связей.

Мысленно отбросим стержень BD, а его реакцию S будем считать неизвестной по величине активной силой. После этого сообщим системе возможное перемещение (при условии, что данная связь совершенно отсутствует). Это будет элементарный поворот балки АВ на угол вокруг оси шарнира А в ту или другую сторону (на рис. 74 - против часовой стрелки). Элементарные перемещения точек приложения активных сил и отнесенной к ним реакции S при этом равны:

Составляем уравнение работ

Приравнивая нулю выражение в скобках, отсюда находим

Пример 3. Однородный стержень ОА весом закреплен при помощи цилиндрического шарнира О и пружины АВ (рис. 75). Определить положения, в которых стержень может находиться в равновесии, если жесткость пружины равна к, натуральная длина пружины - и точка В находится на одной вертикали с точкой О.

Решение. К стержню ОА приложены две активные силы - собственный вес и упругая сила пружины где - угол, образуемый стержнем с вертикалью ОВ. Наложенные связи - идеальные (в данном случае имеется единственная связь - шарнир О).

Сообщим системе возможное перемещение - элементарный поворот стержня вокруг оси шарнира О на угол , вычислим возможную работу активных сил и приравняем ее нулю:

Подставляя сюда выражение для силы F и значения

после простых преобразований получаем следующее тригонометрическое уравнение для определения угла (р при равновесии стержня:

Уравнение определяет три значения для угла :

Следовательно, стержень имеет три положения равновесия. Так как два первых положения равновесия существуют, если выполняется условие . Равновесие при существует всегда.

В заключение заметим, что принцип возможных перемещений можно применять и к системам с неидеальными связями. Акцент на идеальность связей делается в формулировке принципа с одной единственной целью - показать, что уравнения равновесия механических систем можно составлять, не включая в них реакции идеальных связей, упрощая этим расчеты.

Для систем с неидеальными связями принцип возможных перемещений следует переформулировать так: для равновесия механической системы с удерживающими связями, среди которых имеются неидеальные связи, необходимо и достаточно, чтобы возможная работа активных сил и реакций неидеальных связей была равна нулю. Можно, однако, обойтись без переформулировки принципа, условно относя реакции неидеальных связей в число активных сил.

Вопросы для самопроверки

1. В чем основная особенность несвободной механической системы по сравнению со свободной?

2. Что называется возможным перемещением? Приведите примеры.

3. Как определяются вариации координат точек системы при ее возможном перемещении (укажите три способа)?

4. Как классифицируются связи по виду их уравнений? Приведите примеры связей удерживающих и не удерживающих, стационарных и нестационарных.

5. В каком случае связь называется идеальной? Неидеальной?

6. Приведите словесную формулировку и математическую запись принципа возможных перемещений.

7. Как формулируется принцип возможных перемещений для систем, содержащих неидеальные связи?

8. Перечислите основные типы задач, решаемые при помощи принципа возможных перемещений.

Упражнения

При помощи принципа возможных перемещений решить следующие задачи из сборника И.В. Мещерского 1981 г. издания: 46.1; 46.8; 46.17; 2.49; 4.53.


Устанавливающий общее условие равновесия механической системы . Согласно этому принципу, для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма виртуальных работ A_i только активных сил на любом возможном перемещении системы была равна нулю (если система приведена в это положение с нулевыми скоростями).

Количество линейно независимых уравнений равновесия, которые можно составить для механической системы, исходя из принципа возможных перемещений, равно количеству степеней свободы этой механической системы.

Возможными перемещениями несвободной механической системы называются воображаемые бесконечно малые перемещения, допускаемые в данный момент наложенными на систему связями (при этом время, входящее явно в уравнения нестационарных связей, считается зафиксированным). Проекции возможных перемещений на декартовы координатные оси называются вариациями декартовых координат.

Виртуальными перемещениями называются бесконечно малые перемещения, допускаемые связями, при "замороженном времени". Т.е. они отличаются от возможных перемещений, только когда связи реономны (явно зависят от времени).

Если, например, на систему наложено l голономных реономных связей:

f_{\alpha}(\vec r, t) = 0, \quad \alpha = \overline{1,l}

То возможные перемещения \Delta \vec r - это те, которые удовлетворяют

\sum_{i=1}^{N} \frac{\partial f_{\alpha}}{\partial \vec{r}} \cdot \Delta \vec{r} + \frac{\partial f_{\alpha}}{\partial t} \Delta t = 0, \quad \alpha = \overline{1,l}

А виртуальные \delta \vec r:

\sum_{i=1}^{N} \frac{\partial f_{\alpha}}{\partial \vec{r}}\delta \vec{r} = 0, \quad \alpha = \overline{1,l}

Виртуальные перемещения, вообще говоря, не имеют отношения к процессу движения системы - они вводятся лишь для того, чтобы выявить существующие в системе соотношения сил и получить условия равновесия. Малость же перемещений нужна для того, чтобы можно было считать реакции идеальных связей неизменными.

Напишите отзыв о статье "Принцип возможных перемещений"

Литература

  • Бухгольц Н. Н. Основной курс теоретической механики. Ч. 1. 10-е изд. - Спб.: Лань, 2009. - 480 с. - ISBN 978-5-8114-0926-6 .
  • Тарг С. М. Краткий курс теоретической механики: Учебник для вузов. 18-е изд. - М .: Высшая школа, 2010. - 416 с. - ISBN 978-5-06-006193-2 .
  • Маркеев А. П. Теоретическая механика: учебник для университетов. - Ижевск: НИЦ "Регулярная и хаотичная динамика", 2001. - 592 с. - ISBN 5-93972-088-9 .

Отрывок, характеризующий Принцип возможных перемещений

– Nous у voila, [В этом то и дело.] отчего же ты прежде ничего не сказала мне?
– В мозаиковом портфеле, который он держит под подушкой. Теперь я знаю, – сказала княжна, не отвечая. – Да, ежели есть за мной грех, большой грех, то это ненависть к этой мерзавке, – почти прокричала княжна, совершенно изменившись. – И зачем она втирается сюда? Но я ей выскажу всё, всё. Придет время!

В то время как такие разговоры происходили в приемной и в княжниной комнатах, карета с Пьером (за которым было послано) и с Анной Михайловной (которая нашла нужным ехать с ним) въезжала во двор графа Безухого. Когда колеса кареты мягко зазвучали по соломе, настланной под окнами, Анна Михайловна, обратившись к своему спутнику с утешительными словами, убедилась в том, что он спит в углу кареты, и разбудила его. Очнувшись, Пьер за Анною Михайловной вышел из кареты и тут только подумал о том свидании с умирающим отцом, которое его ожидало. Он заметил, что они подъехали не к парадному, а к заднему подъезду. В то время как он сходил с подножки, два человека в мещанской одежде торопливо отбежали от подъезда в тень стены. Приостановившись, Пьер разглядел в тени дома с обеих сторон еще несколько таких же людей. Но ни Анна Михайловна, ни лакей, ни кучер, которые не могли не видеть этих людей, не обратили на них внимания. Стало быть, это так нужно, решил сам с собой Пьер и прошел за Анною Михайловной. Анна Михайловна поспешными шагами шла вверх по слабо освещенной узкой каменной лестнице, подзывая отстававшего за ней Пьера, который, хотя и не понимал, для чего ему надо было вообще итти к графу, и еще меньше, зачем ему надо было итти по задней лестнице, но, судя по уверенности и поспешности Анны Михайловны, решил про себя, что это было необходимо нужно. На половине лестницы чуть не сбили их с ног какие то люди с ведрами, которые, стуча сапогами, сбегали им навстречу. Люди эти прижались к стене, чтобы пропустить Пьера с Анной Михайловной, и не показали ни малейшего удивления при виде их.
– Здесь на половину княжен? – спросила Анна Михайловна одного из них…
– Здесь, – отвечал лакей смелым, громким голосом, как будто теперь всё уже было можно, – дверь налево, матушка.
– Может быть, граф не звал меня, – сказал Пьер в то время, как он вышел на площадку, – я пошел бы к себе.
Анна Михайловна остановилась, чтобы поровняться с Пьером.
– Ah, mon ami! – сказала она с тем же жестом, как утром с сыном, дотрогиваясь до его руки: – croyez, que je souffre autant, que vous, mais soyez homme. [Поверьте, я страдаю не меньше вас, но будьте мужчиной.]
– Право, я пойду? – спросил Пьер, ласково чрез очки глядя на Анну Михайловну.

Загрузка...
Top