Необходимое условие максимума или минимума функции. Экстремумы функции: признаки существования, примеры решений

Точка экстремума функции - это точка области определения функции , в которой значение функции принимает минимальное или максимальное значение. Значения функции в этих точках называются экстремумами (минимумом и максимумом) функции .

Определение . Точка x 1 области определения функции f (x ) называется точкой максимума функции , если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) > f (x 0 + Δx ) x 1 максимум.

Определение . Точка x 2 области определения функции f (x ) называется точкой минимума функции , если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) < f (x 0 + Δx ) ). В этом случае говорят, что функция имеет в точке x 2 минимум.

Допустим, точка x 1 - точка максимума функции f (x ) . Тогда в интервале до x 1 функция возрастает , поэтому производная функции больше нуля (f "(x ) > 0 ), а в интервале после x 1 функция убывает, следовательно, и производная функции меньше нуля (f "(x ) < 0 ). Тогда в точке x 1

Допустим также, что точка x 2 - точка минимума функции f (x ) . Тогда в интервале до x 2 функция убывает, а производная функции меньше нуля (f "(x ) < 0 ), а в интервале после x 2 функция возрастает, а производная функции больше нуля (f "(x ) > 0 ). В этом случае также в точке x 2 производная функции равна нулю или не существует.

Теорема Ферма (необходимый признак существования экстремума функции) . Если точка x 0 - точка экстремума функции f (x ) , то в этой точке производная функции равна нулю (f "(x ) = 0 ) или не существует.

Определение . Точки, в которых производная функции равна нулю или не существует, называются критическими точками .

Пример 1. Рассмотрим функцию .

В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.

Таким образом, условия о том, что производная функции в точке равна нулю или не существует, являются необходимыми условиями экстремума, но не достаточными, поскольку можно привести и другие примеры функций, для которых эти условия выполняются, но экстремума в соответствующей точке функция не имеет. Поэтому нужно располагать достаточными признаками , позволяющими судить, имеется ли в конкретной критической точке экстремум и какой именно - максимум или минимум.

Теорема (первый достаточный признак существования экстремума функции). Критическая точка x 0 f (x ) , если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.

Если же вблизи точки x 0 , слева и справа от неё, производная сохраняет знак, то это означает, что функция либо только убывает, либо только возрастает в некоторой окрестности точки x 0 . В этом случае в точке x 0 экстремума нет.

Итак, чтобы определить точки экстремума функции, требуется выполнить следующее :

  1. Найти производную функции.
  2. Приравнять производную нулю и определить критические точки.
  3. Мысленно или на бумаге отметить критические точки на числовой оси и определить знаки производной функции в полученных интервалах. Если знак производной меняется с "плюса" на "минус", то критическая точка является точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
  4. Вычислить значение функции в точках экстремума.

Пример 2. Найти экстремумы функции .

Решение. Найдём производную функции:

Приравняем производную нулю, чтобы найти критические точки:

.

Так как для любых значений "икса" знаменатель не равен нулю, то приравняем нулю числитель:

Получили одну критическую точку x = 3 . Определим знак производной в интервалах, разграниченных этой точкой:

в интервале от минус бесконечности до 3 - знак минус, то есть функция убывает,

в интервале от 3 до плюс бесконечности - знак плюс, то есть функция возрастает.

То есть, точка x = 3 является точкой минимума.

Найдём значение функции в точке минимума:

Таким образом, точка экстремума функции найдена: (3; 0) , причём она является точкой минимума.

Теорема (второй достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f (x ) , если вторая производная функции в этой точке не равна нулю (f ""(x ) ≠ 0 ), причём, если вторая производная больше нуля (f ""(x ) > 0 ), то точкой максимума, а если вторая производная меньше нуля (f ""(x ) < 0 ), то точкой минимума.

Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.

Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.

Локальный характер экстремумов функции

Из приведённых определений следует, что экстремум функции имеет локальный характер - это наибольшее и наименьшее значение функции по сравнению с близлежайшими значениями.

Предположим, вы рассматриваете свои заработки в отрезке времени протяжённостью в один год. Если в мае вы заработали 45 000 рублей, а в апреле 42 000 рублей и в июне 39 000 рублей, то майский заработок - максимум функции заработка по сравнению с близлежайшими значениями. Но в октябре вы заработали 71 000 рублей, в сентябре 75 000 рублей, а в ноябре 74 000 рублей, поэтому октябрьский заработок - минимум функции заработка по сравнению с близлежашими значениями. И вы легко видите, что максимум среди значений апреля-мая-июня меньше минимума сентября-октября-ноября.

Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .

То есть не следует думать, что максимум и минимум функции являются, соответственно, её наибольшим и наименьшим значениями на всём рассматриваемом отрезке. В точке максимума функция имеет наибольшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке максимума, а в точке минимума - наименьшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке минимума.

Поэтому можно уточнить приведённое выше понятие точек экстремума функции и называть точки минимума точками локального минимума, а точки максимума - точками локального максимума.

Ищем экстремумы функции вместе

Пример 3.

Решение.Функция определена и непрерывна на всей числовой прямой. Её производная существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых , т.е. , откуда и . Критическими точками и разбивают всю область определения функции на три интервала монотонности: . Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.

Для интервала контрольной точкой может служить : находим . Взяв в интервале точку , получим , а взяв в интервале точку , имеем . Итак, в интервалах и , а в интервале . Согласно первому достаточному признаку экстремума, в точке экстремума нет (так как производная сохраняет знак в интервале ), а в точке функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции: , а . В интервале функция убывает, так как в этом интервале , а в интервале возрастает, так как в этом интервале .

Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение , корни которого и , т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Пример 4. Найти экстремумы функции и построить её график.

Областью определения функции является вся числовая прямая, кроме точки , т.е. .

Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала .

Находим производную и критические точки функции:

1) ;

2) ,

но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.

Таким образом, заданная функция имеет две критические точки: и . Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку . Для этого найдём вторую производную и определим её знак при : получим . Так как и , то является точкой минимума функции, при этом .

Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:

(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если , то . Далее, находим

,

т.е. если , то .

Точек пересечения с осями график функции не имеет. Рисунок - в начале примера.

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Продолжаем искать экстремумы функции вместе

Пример 8. Найти экстремумы функции .

Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из получаем .

Найдём первую производную функции.

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.

Точки максимума и минимума функции сопровождаются более сложными построениями графика. Это обусловлено более глубокой необходимостью прорабатывать проблему острого экстремума.

Необходимо также находить производную сложной и простой функции, так как это одно из самых главных понятий проблематики экстремума.

Экстремум функционала

Для того чтобы отыскать вышеозначенное значение, необходимо придерживаться следующих правил:

  • определить необходимое условие экстремального отношения;
  • учитывать достаточное условие крайних точек на графике;
  • осуществлять расчет острого экстремума.

Используются также такие понятия, как слабый минимум и сильный минимум. Это необходимо учитывать при определении экстремума и точного его расчета. При этом острый функционал – это поиск и создание всех необходимых условий для работы с графиком функции.

Максимумом следует называть самое большое число или самый большой предел, которого можно достигнуть. Минимум – это, как все мы прекрасно знаем, прямая противоположность максимуму, т.е. это самое маленькое число и самый маленький предел. Слова минимум и максимум, а также их производные встречаются в таких выражениях и фразах как:

Получать максимум от общения.

Чтобы выучить стихотворение его нужно прочесть как минимум 3-4 раза.

Максимум на что он способен, это…..

У них есть как минимум два общих друга.

Он получил максимальный бал.

Используй возможности по-максимуму!

Это тот минимум, который нужно знать.

Прожиточный минимум.

Минимальное атмосферное давление.

Минимальные/максимальные холода за ….. лет.

Вам потребуется минимум несколько часов для выполнения этой работы.

Такие понятия как максимум и минимум можно встретить и в специальных научных терминах. Например, в математике есть такое понятие как максимум и минимум функции.

Таким образом, максимумом в математике называется наибольшее значение функции. При этом максимальное значение функции больше всех соседних с ней значений. Максимум функции – это такое ее значение, когда сначала значение увеличивается, а затем сразу же начинает убывать, при этом она имеет максимум в том месте, где увеличение и уменьшение функции переходят от одного к другому. Минимум функции – это, соответственно, наименьшее значение функции.

Первую производную функции можно считать положительной, если она поднимается вверх, когда мы увеличиваем переменную, тогда функцию можно считать положительной. Если же первая переменная при увеличении производного, убывает, то функцию следует считать отрицательной.

Производная – это основное значение, которое используют при дифференциальных вычислениях (изучение производной и дифференциала, которые помогают исследовать математические функции), она может пониматься как скорость изменения функции в конкретной точке. Чем скорость больше, тем сильнее меняется функция, чем меньше, тем медленнее (это, однако, правда, только если функция положительная). Таким образом, именно скорость изменения функции в заданной точке и определяет ее наклоны и выпуклости. А переменная – это величина, которая способна менять свое значение. Ее обозначают как x или time.

Переменной можно считать атрибут системы (как физической, так и абстрактной), который способен изменить свое значение. В более глобальном смысле переменной можно назвать и время, и температуру и, вообще, всю жизнь (они могут меняться). Переменная имеет множество значений, которые она способна принимать. Можно считать, что это множество и является переменной.

Что касается непосредственно функции, то она должна пройти от положительного к отрицательному значению через ноль. Таким образом, при том значении переменного, которому соответствует максимум функции, ее производная будет равна нулю. Именно это свойство функции позволяет определять значения x, при которых функция достигает максимума. Однако, если мы увеличим переменную и, при этом, функция сначала увеличивается, а затем уменьшается, то функция, при изменении с отрицательного значения на положительное (пройдя через ноль), достигнет не максимального, а, наоборот, минимального значения. Хотя по логике вещей это можно было бы принять именно за максимальное значение (он находится в верхней точке функции).

Точки максимума и минимума функции еще называют точками экстремума.

Таким образом, как в обычной жизни, так и в математике максимум и минимум – это две крайние противоположности, которые обозначают что-то самое большое и что-то самое маленькое.

Рассмотрим функцию y = f(x), которая рассматривается на промежутке (а, b).

Если можно указать такую б-окрестность точки х1 принадлежащую промежутку (а, b), что для всех х (х1, б), выполняется неравенство f(x1) > f(x), то y1 = f1(x1) называют максимумом функции y = f{x) см рис.

Максимум функции y = f{x) обоначим через max f(x). Если можно указать такую б-окрестность точки х2 принадлежащую промежутку (а, b), что для всех х принадлежащую О (х2, 6), х не равно х2 выполняется неравенство f(x2) < f(x) , то y2= f(х2) называют минимумом функции y-f{x) (см. рис.).

Пример нахождения максимума смотрите на следующем видео

Минимум функции

Минимум функции у = f(x) обозначим через min f(x). Другими словами, максимумом или минимумом функции у = f(x) называют такое ее значение, которое больше (меньше) всех других значений, принимаемых в точках, достаточно близких к данной и отличных от нее.

Замечание 1. Максимум функции , определяемый неравенством называется строгим максимумом; нестрогий максимум определяется неравенством f(x1) > = f(x2)

Замечание 2. имеют локальный характер (это наибольшее и наименьшее значения функции в достаточно малой окрестности соответствующей точки); отдельные минимумы некоторой функции могут оказаться больше максимумов той же функции

Вследствие этого максимум (минимум) функции называют локальным максимумом (локальным минимумом) в отличие от абсолютного максимума (минимума) — наибольшего (наименьшего) значения в области определения функции.

Максимум и минимум функции называются экстремумом . Экстремумы в находят для построяния графиков функций

Латинское extremum означает «крайнее» значение. Значение аргумента х, при котором достигается экстремум, называется точкой экстремума. Необходимое условие экстремума выражается следующей теоремой.

Теорема . В точке экстремума дифференцируемой функции и ее производная равна нулю.

Теорема имеет простой геометрический смысл: касательная к графику дифференцируемой функции в соответствующей точке параллельна оси Ох

значение

Наибольшее

значение

Наименьшее

Точка максимума

Точка минимума

Задачи на нахождение точек экстремумафункции решаются по стандартной схеме в 3 шага.

Шаг 1 . Найдите производную функции

  • Запомнитеформулы производной элементарных функции и основные правила дифференцирования, чтобы найти производную.

y′(x)=(x3−243x+19)′=3x2−243.

Шаг 2 . Найдите нули производной

  • Решите полученное уравнение, чтобы найти нули производной.

3x2−243=0⇔x2=81⇔x1=−9,x2=9.

Шаг 3 . Найдите точки экстремума

  • Используйте метод интервалов, чтобы определить знаки производной;
  • В точке минимума производная равна нулю и меняет знак с минуса на плюс, а вточке максимума – с плюса на минус.

Применим этот подход, чтобы решить следующую задачу:

Найдите точку максимума функции y=x3−243x+19.

1) Найдем производную: y′(x)=(x3−243x+19)′=3x2−243;

2) Решим уравнение y′(x)=0: 3x2−243=0⇔x2=81⇔x1=−9,x2=9;

3) Производная положительная при x>9 и x<−9 и отрицательная при −9

Как искать наибольшее и наименьшее значение функции

Для решения задачи на поиск наибольших и наименьших значений функциинеобходимо :

  • Найти точки экстремума функции на отрезке (интервале).
  • Найти значения в концах отрезка и выбрать наибольшее или наименьшее величину из значений в точках экстремума и в концах отрезка.

Во многих задачах помогаеттеорема :

Если на отрезке только одна точка экстремума, причем это точка минимума, то в ней достигается наименьшее значение функции. Если это точка максимума, то в ней достигается наибольшее значение.

14. Понятие и основные свойств неопределённого интеграла.

Если функция f (x X , и k – число, то

Короче: постоянную можно выносить за знак интеграла.

Если функции f (x ) и g (x ) имеют первообразные на промежутке X , то

Короче: интеграл суммы равен сумме интегралов.

Если функция f (x ) имеет первообразную на промежутке X , то для внутренних точек этого промежутка:



Короче: производная от интеграла равна подынтегральной функции.

Если функция f (x ) непрерывна на промежутке X и дифференцируема во внутренних точках этого промежутка, то:

Короче: интеграл от дифференциала функции равен этой функции плюс постоянная интегрирования.

Дадим строгое математическое определение понятия неопределенного интеграла .

Выражение вида называется интегралом от функции f(x) , где f(x) - подынтегральная функция, которая задается (известная), dx - дифференциал x , с символом всегда присутствует dx .

Определение. Неопределенным интегралом называется функция F(x) + C , содержащая произвольное постоянное C , дифференциал которой равенподынтегральному выражению f(x)dx , т.е. или Функцию называют первообразной функции . Первообразная функции определяется с точностью до постоянной величины.

Напомним, что -дифференциал функции и определяется следующим образом:

Задача нахождения неопределенного интеграла заключается в нахождении такой функции, производная которой равняется подынтегральному выражению. Данная функция определяется с точностью до постоянной, т.к. производная от постоянной равняется нулю.

Например, известно, что , тогда получается, что , здесь - произвольная постоянная.

Задача нахождение неопределенного интеграла от функций не столь простая и легкая, как кажется на первый взгляд. Во многих случаях должен быть навык работы снеопределенными интегралами, должен быть опыт, который приходит с практикой и с постоянным решением примеров на неопределенные интегралы. Стоит учитывать тот факт, что неопределенные интегралы от некоторых функций (их достаточно много) не берутся в элементарных функциях.

15.Таблица основных неопределённых интегралов.

Основные формулы

16. Определённый интеграл как предел интегральной суммы. Геометрический и физический смыл интеграла.

Пусть функция у=ƒ(х) определена на отрезке [а; b], а < b. Выполним следующие действия.

1. С помощью точек х 0 =а, x 1, х 2, ..., х n = В (х 0

2. В каждом частичном отрезке , i = 1,2,...,n выберем произвольную точку с i є и вычислим значение функции в ней, т. е. величину ƒ(с i).

3. Умножим найденное значение функции ƒ (с i) на длину ∆x i =x i -x i-1 соответствующего частичного отрезка: ƒ (с i) ∆х i.

4. Составим сумму S n всех таких произведений:

Сумма вида (35.1) называется интегральной суммой функции у = ƒ(х) на отрезке [а; b]. Обозначим через λ длину наибольшего частичного отрезка:λ = max ∆x i (i = 1,2,..., n).

5. Найдем предел интегральной суммы (35.1), когда n → ∞ так, что λ→0.

Если при этом интегральная сумма S n имеет предел I, который не зависит ни от способа разбиения отрезка [а; b] на частичные отрезки, ни от выбора точек в них, то число I называется определенным интегралом от функции у = ƒ(х) на отрезке [а; b] и обозначается Таким образом,

Числа а и b называются соответственна нижним и верхним пределами интегрирования, ƒ(х) - подынтегральной функцией, ƒ(х) dx - подынтегральным выражением, х - переменной интегрирования, отрезок [а; b] - областью (отрезком) интегрирования.

Функция у=ƒ(х), для которой на отрезке [а; b] существует определенный интеграл называется интегрируемой на этом отрезке.

Сформулируем теперь теорему существования определенного интеграла.

Теорема 35.1 (Коши). Если функция у = ƒ(х) непрерывна на отрезке [а; b], то определенный интеграл

Отметим, что непрерывность функции является достаточным условием ее интегрируемости. Однако определенный интеграл может существовать и для некоторых разрывных функций, в частности для всякой ограниченной на отрезке функции, имеющей на нем конечное число точек разрыва.

Укажем некоторые свойства определенного интеграла, непосредственно вытекающие из его определения (35.2).

1. Определенный интеграл не зависим от обозначения переменной интегрирования:

Это следует из того, что интегральная сумма (35.1), а следовательно, и ее предел (35.2) не зависят от того, какой буквой обозначается аргумент данной функции.

2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

3. Для любого действительного числа с.

17. Формула Ньютона-Лейбница. Основные свойства определенного интеграла.

Пусть функция y = f(x) непрерывна на отрезке и F(x) - одна из первообразных функции на этом отрезке, тогда справедлива формула Ньютона-Лейбница : .

Формулу Ньютона-Лейбница называют основной формулой интегрального исчисления .

Для доказательства формулы Ньютона-Лейбница нам потребуется понятие интеграла с переменным верхним пределом.

Если функция y = f(x) непрерывна на отрезке , то для аргумента интеграл вида является функцией верхнего предела. Обозначим эту функцию , причем эта функция непрерывная и справедливо равенство .

Действительно, запишем приращение функции , соответствующее приращению аргумента и воспользуемся пятым свойством определенного интеграла и следствием из десятого свойства:

где .

Перепишем это равенство в виде . Если вспомнить определение производной функции и перейти к пределу при , то получим . То есть, - это одна из первообразных функции y = f(x) на отрезке . Таким образом, множество всех первообразных F(x) можно записать как , где С – произвольная постоянная.

Вычислим F(a) , используя первое свойство определенного интеграла: , следовательно, . Воспользуемся этим результатом при вычислении F(b) : , то есть . Это равенство дает доказываемую формулу Ньютона-Лейбница .

Приращение функции принято обозначать как . Пользуясь этим обозначением, формула Ньютона-Лейбница примет вид .

Для применения формулы Ньютона-Лейбница нам достаточно знать одну из первообразных y=F(x) подынтегральной функции y=f(x) на отрезке и вычислить приращение этой первообразной на этом отрезке. В статье методы интегрирования разобраны основные способы нахождения первообразной. Приведем несколько примеров вычисления определенных интегралов по формуле Ньютона-Лейбница для разъяснения.

Пример.

Вычислить значение определенного интеграла по формуле Ньютона-Лейбница.

Решение.

Для начала отметим, что подынтегральная функция непрерывна на отрезке , следовательно, интегрируема на нем. (Об интегрируемых функциях мы говорили в разделе функции, для которых существует определенный интеграл).

Из таблицы неопределенных интегралов видно, что для функции множество первообразных для всех действительных значений аргумента (следовательно, и для ) записывается как . Возьмем первообразную при C = 0 : .

Теперь осталось воспользоваться формулой Ньютона-Лейбница для вычисления определенного интеграла: .

18. Геометрические приложения определенного интеграла.

ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Прямоугольная С.К. Функция, задана параметрически Полярная С.К.
Вычисление площадей плоских фигур
Вычисление длины дуги плоской кривой
Вычисление площади поверхности вращения

Вычисление объема тела

Вычисление объема тела по известным площадям параллельных сечений:

Объем тела вращения: ; .

Пример 1 . Найти площадь фигуры, ограниченной кривой y=sinx, прямыми

Решение: Находим площадь фигуры:

Пример 2 . Вычислить площадь фигуры, ограниченной линиями

Решение: Найдем абсциссы точек пересечения графиков данных функций. Для этого решаем систему уравнений

Отсюда находим x 1 =0, x 2 =2,5.

19. Понятие дифференциальных управлений. Дифференциальные уравнения первого порядка.

Дифференциа́льное уравне́ние - уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной, числами (параметрами). Порядок входящих в уравнение производных может быть различен (формально он ничем не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или все, кроме хотя бы одной производной, отсутствовать вовсе. Не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, не является дифференциальным уравнением.

Дифференциальные уравнения в частных производных (УРЧП) - это уравнения, содержащие неизвестныефункции от нескольких переменных и их частные производные. Общий вид таких уравнений можно представить в виде:

где - независимые переменные, а - функция этих переменных. Порядок уравнений в частных производных может определяется так же, как для обыкновенных дифференциальных уравнений. Ещё одной важной классификацией уравнений в частных производных является их разделение на уравнения эллиптического, параболического и гиперболического типа, в особенности для уравнений второго порядка.

Как обыкновенные дифференциальные уравнения, так и уравнения в частных производных можно разделить налинейные и нелинейные . Дифференциальное уравнение является линейным, если неизвестная функция и её производные входят в уравнение только в первой степени (и не перемножаются друг с другом). Для таких уравнений решения образуют аффинное подпространство пространства функций. Теория линейных ДУ развита значительно глубже, чем теория нелинейных уравнений. Общий вид линейного дифференциального уравнения n -го порядка:

где p i (x ) - известные функции независимой переменной, называемые коэффициентами уравнения. Функция r (x ) в правой части называется свободным членом (единственное слагаемое, не зависящее от неизвестной функции) Важным частным классом линейных уравнений являются линейные дифференциальные уравнения с постоянными коэффициентами .

Подклассом линейных уравнений являются однородные дифференциальные уравнения - уравнения, которые не содержат свободного члена: r (x ) = 0. Для однородных дифференциальных уравнений выполняется принцип суперпозиции: линейная комбинация частных решений такого уравнения также будет его решением. Все остальные линейные дифференциальные уравнения называются неоднородными дифференциальными уравнениями.

Нелинейные дифференциальные уравнения в общем случае не имеют разработанных методов решения, кроме некоторых частных классов. В некоторых случаях (с применением тех или иных приближений) они могут быть сведены к линейным. Например, линейное уравнение гармонического осциллятора может рассматриваться как приближение нелинейного уравнения математического маятника для случая малых амплитуд, когда y ≈ sin y .

· - однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Решением является семейство функций , где и - произвольные константы, которые для конкретного решения определяются из задаваемых отдельно начальных условий. Это уравнение, в частности, описывает движение гармонического осциллятора с циклической частотой 3.

· Второй закон Ньютона можно записать в форме дифференциального уравнения где m - масса тела, x - его координата, F (x , t ) - сила, действующая на тело с координатой x в момент времени t . Его решением является траектория движения тела под действием указанной силы.

· Дифференциальное уравнение Бесселя - обыкновенное линейное однородное уравнение второго порядка с переменными коэффициентами: Его решениями являются функции Бесселя.

· Пример неоднородного нелинейного обыкновенного дифференциального уравнения 1-го порядка:

В следующей группе примеров неизвестная функция u зависит от двух переменных x и t или x и y .

· Однородное линейное дифференциальное уравнение в частных производных первого порядка:

· Одномерное волновое уравнение - однородное линейное уравнение в частных производных гиперболического типа второго порядка с постоянными коэффициентами, описывает колебание струны, если - отклонение струны в точке с координатой x в момент времени t , а параметр a задаёт свойства струны:

· Уравнение Лапласа в двумерном пространстве - однородное линейное дифференциальное уравнение в частных производных второго порядка эллиптического типа с постоянными коэффициентами, возникающее во многих физических задачах механики, теплопроводности, электростатики, гидравлики:

· Уравнение Кортевега - де Фриза, нелинейное дифференциальное уравнение в частных производных третьего порядка, описывающее стационарные нелинейные волны, в том числе солитоны:

20. Дифференциальные уравнения с разделяющимся применимыми. Линейные уравнения и метод Бернулли.

Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и её производной. Оно имеет вид Целая степень. Действительно, если найти и подставить в уравнения рассмотренных типов, то получится верное равенство. Как отмечалось в статье об однородных уравнениях , если по условию требуется найти только частное решение, то функция по понятной причине нас не колышет, но вот когда требуется найти общее решение/интеграл, то необходимо проследить, чтобы эту функцию не потерять!

Все популярные разновидности уравнения Бернулли я принёс в большом мешке с подарками и приступаю к раздаче. Развешивайте носки под ёлкой.

Пример 1

Найти частное решение дифференциального уравнения, соответствующее заданному начальному условию.
,

Наверное, многие удивились, что первый подарок сразу же извлечён из мешка вместе сзадачей Коши . Это не случайность. Когда для решения предложено уравнение Бернулли, почему-то очень часто требуется найти частное решение. По своей коллекции я провёл случайную выборку из 10 уравнений Бернулли, и общее решение (без частного решения) нужно найти всего в 2-х уравнениях. Но, собственно, это мелочь, поскольку общее решение придётся искать в любом случае.

Решение: Данный диффур имеет вид , а значит, является уравнением Бернулли

Загрузка...
Top